Как посчитать сколько

Процентный калькулятор: 10 операций с процентами

Один процент — это сотая часть от числа. Данное понятие используется, когда нужно обозначить отношение доли к целому. Кроме этого, в процентах можно сравнивать несколько величин, при этом обязательно указывая, относительного какого целого проценты вычисляются. Например, расходы выше доходов на 10 % или цена на железнодорожные билеты возросла на 15 % в сравнении с тарифами прошлого года. Число процентов выше 100 означает, что доля превышает целое, как часто бывает при статистических расчетах.

Процент как финансовое понятие — плата, заемщика кредитору за предоставление денег во временное пользование. В бизнесе встречается выражение «работать за проценты». В данном случае подразумевается, что размер вознаграждения зависит от прибыли или оборота (комиссионные). Обойтись без вычисления процентов невозможно в бухгалтерии, бизнесе, банковском деле. Чтобы упростить расчеты, разработан онлайн-калькулятор процентов.

Калькулятор позволяет вычислить:

  • Процент от заданного значения.
  • Процент из суммы (налог по фактической зарплате).
  • Процент от разницы (НДС из суммы с НДС).
  • И многое другое.

При решении задач на калькуляторе процентов нужно оперировать тремя значениями, одно из которых неизвестно (по заданным параметрам вычисляется переменная). Сценарий расчета следует выбирать, исходя из заданных условий.

Примеры расчетов

1. Вычисление процента от числа

Чтобы найти число, составляющее 25 % от 1 000 руб., нужно:

  • 1 000 × 25 / 100 = 250 руб.
  • Или 1 000 × 0,25 = 250 руб.

Для расчета на обычном калькуляторе, нужно 1 000 умножить на 25 и нажать кнопку %.

2. Определение целого числа (100 %)

Мы знаем, что 250 руб. составляет 25 % от какого-то числа. Как его вычислить?

Составим простую пропорцию:

  • 250 руб. — 25 %
  • Y руб. — 100 %
  • Y = 250 × 100 / 25 = 1 000 руб.

3. Процент между двумя числами

Допустим, предполагалась прибыль 800 руб., а получили 1 040 руб. Каков процент превышения?

Пропорция будет такой:

  • 800 руб. — 100 %
  • 1 040 руб. – Y %
  • Y = 1 040 × 100 / 800 = 130 %

Перевыполнения плана по прибыли — 30 %, то есть выполнение — 130 %.

4. Расчет не из 100 %

Например, в магазин, состоящий из трех отделов, приходят 100 % покупателей. В продуктовый отдел — 800 человек (67 %), в отдел бытовой химии — 55. Какой процент покупателей приходит в отдел бытовой химии?

  • 800 посетителей – 67 %
  • 55 посетителей — Y %
  • Y = 55 × 67 / 800 = 4,6 %

5. На сколько процентов одно число меньше другого

Цена товара упала с 2 000 до 1 200 руб. На сколько процентов подешевел товар или на сколько процентов 1 200 меньше 2 000?

  • 2 000 — 100 %
  • 1 200 – Y %
  • Y = 1 200 × 100 / 2 000 = 60 % (60 % к цифре 1 200 от 2 000)
  • 100 % − 60 % = 40 % (число 1 200 меньше 2 000 на 40 %)

6. На сколько процентов одно число больше другого

Зарплата выросла с 5 000 до 7 500 рублей. На сколько процентов увеличилась зарплата? На сколько процентов 7 500 больше 5 000?

  • 5 000 руб. — 100 %
  • 7 500 руб. — Y %
  • Y = 7 500 × 100 / 5 000 = 150 % (в цифре 7 500 150 % от 5 000)
  • 150 % − 100 % = 50 % (число 7 500 больше 5 000 на 50 %)

7. Увеличение числа на определенный процент

Цена товара S выше 1 000 руб. на 27 %. Какова цена товара?

  • 1 000 руб. – 100 %
  • S — 100 % + 27 %
  • S = 1 000 × (100 + 27) / 100 = 1 270 руб.

Онлайн-калькулятор делает вычисления намного проще: вам нужно выбрать вид расчета, ввести число и процент (в случае вычисления процентного соотношения — второе число), указать точность расчета и дать команду о начале действий.

Как высчитать процент от суммы?

Деньги

Содержание

Возможно, математика не была вашим любимым предметом в школе, а числа пугали и наводили тоску. Но во взрослой жизни от них никуда не деться. Без вычислений не заполнить квитанцию об оплате электроэнергии, не составить бизнес-проект, не помочь ребёнку с домашним заданием. Часто в этих и других случаях требуется посчитать процент от суммы. Как это сделать, если о том, что такое процент, со школьных времён остались смутные воспоминания? Давайте напряжём память и разберёмся.

Способ первый: процент от суммы через определение значения одного процента

Процент – одна сотая часть от числа и обозначается знаком %. Если разделить сумму на 100, то как раз получится один её процент. А дальше всё просто. Полученное число умножаем на нужное количество процентов. Таким способом легко посчитать прибыль по вкладу в банке.

Читать еще:  Как восстановить кбм после замены прав

Например, вы положили сумму в 30 000 под 9% годовых. Каким будет прибыток? Сумму 30 000 делим на 100. Получаем значение одного процента – 300. Умножаем 300 на 9 и получаем 2700 рублей – прибавку к первоначальной сумме. Если вклад — на два или три года, то этот показатель удваивается или утраивается. Бывают вклады, по которым выплату процентов производят ежемесячно. Тогда надо 2700 разделить на 12 месяцев. 225 рублей будут ежемесячным прибытком. Если проценты капитализируются (прибавляются к общему счёту), то каждый месяц сумма вклада будет увеличиваться. А значит, и процент будет высчитываться не от первоначального взноса, а от нового показателя. Поэтому в конце года вы получите прибыль уже не 2700 рублей, а больше. Сколько? Попробуйте посчитать.

Способ второй: переводим проценты в десятичную дробь

Как вы помните, процент — сотая часть числа. В виде десятичной дроби это 0,01 (ноль целых одна сотовая). Следовательно, 17% – это 0,17 (ноль целых, семнадцать сотых), 45% – 0,45 (ноль целых, сорок пять сотых) и т. д. Полученную десятичную дробь умножаем на сумму, процент от которой считаем. И находим искомый ответ.

Например, давайте рассчитаем сумму подоходного налога от зарплаты 35 000 рублей. Налог составляет 13%. В виде десятичной дроби это будет 0,13 (ноль целых, тринадцать сотых). Умножим сумму 35 000 на 0,13. Получится 4 550. Значит, после вычета подоходного налога вам будет перечислена зарплата 35 000 – 4 550 = 30 050. Иногда эту сумму уже без налога называют «зарплатой на руки» или «чистой». В противовес этому сумму вместе с налогом «грязной зарплатой». Именно «грязную зарплату» указывают в объявлениях о вакансиях компании и в трудовом договоре. На руки же даётся меньше. Сколько? Теперь вы легко посчитаете.

Способ третий: считаем на калькуляторе

Если сомневаетесь в своих математических способностях, то воспользуйтесь калькулятором. С его помощью считается быстрее и точнее, особенно если речь идёт о больших суммах. Проще работать с калькулятором, у которого есть кнопка со знаком процент %. Сумму умножаем на количество процентов и нажимаем кнопку %. На экране высветится необходимый ответ.

Например, вы хотите посчитать, каким будет ваше пособие по уходу за ребёнком до 1,5 лет. Оно составляет 40% от среднего заработка за два последних закрытых календарных года. Допустим, средняя зарплата получилась 30 000 рублей. На калькуляторе 30 000 умножаем на 40 и нажимаем кнопку %. Клавишу = трогать не нужно. На экране высветится ответ 12 000. Это и будет величина пособия.

Как видите, всё очень просто. Тем более, что приложение «Калькулятор» сейчас есть в каждом сотовом телефоне. Если специальной кнопки % у аппарата нет, то воспользуйтесь одним из двух описанных выше способов. А умножение и деление произведите на калькуляторе, что облегчит и ускорит ваши вычисления.

Не забудьте: для облегчения подсчётов есть онлайн-калькуляторы. Действуют они так же, как и обычные, но всегда под рукой, когда вы работаете на компьютере.

Способ четвёртый: составляем пропорцию

Посчитать процент от суммы можно с помощью составления пропорции. Это ещё одно страшное слово из школьного курса математики. Пропорция – равенство между двумя отношениями четырёх величин. Для наглядности лучше сразу разобраться на конкретном примере. Вы хотите купить сапоги за 8 000 рублей. На ценнике указано, что они продаются со скидкой 25%. Сколько же это в рублях? Из 4 величин мы знаем 3. Есть сумма 8 000, которая приравнивается к 100%, и 25%, которые требуется посчитать. В математике обычно неизвестную величину называют X. Получается пропорция:

Для удобства подсчётов переводим проценты в десятичные дроби. Получаем:

Решается пропорция так: Х = 8 000 * 0,25 : 1X = 2 000

2 000 рублей – скидка на сапоги. Вычитаем эту сумму из старой цены. 8 000 – 2 000= 6 000 рублей (новая цена со скидкой). Вот такая приятная пропорция.

Читать еще:  Как пополнить bitcoin

Этим методом можно воспользоваться и для определения значения 100%, если знаете числовой показатель – допустим, 70%. На общекорпоративном собрании шеф объявил, что за год было продано 46 900 единиц товара, при этом план выполнен лишь на 70%. Сколько же необходимо было продать, чтобы выполнить план полностью? Составляем пропорцию:

Переводим проценты в десятичные дроби, получается:

Решаем пропорцию: Х = 46 900 * 1 : 0,7Х = 67 000. Вот таких результатов работы ожидало начальство.

Как вы уже догадались, методом пропорции можно вычислить, сколько процентов составляет числовой показатель от суммы. Например, выполняя тест, вы ответили правильно на 132 вопроса из 150. Сколько процентов задания было сделано?

Переводить в десятичные дроби эту пропорцию не надо, можно сразу решать.

Х = 100 * 132 : 150. В итоге Х = 88%

Как видите, не так уж всё и страшно. Немного терпения и внимания, и вот уже вычисление процентов вами осилено.

Как найти процент от числа? Формула с примерами

В нашей повседневной жизни мы часто сталкиваемся с ситуациями, в которых необходимо что-то высчитать. Это может быть определение суммы выплат для погашения потребительского кредита, процентные скидки в магазинах или расчёт показателя инфляции. Давайте разберёмся, каким образом можно найти процент от какого-либо числа, а также приведём ряд соответствующих формул с подробными примерами.

Особенности поиска процента от числа

Как известно, само слово «процент» происходит от латинского «pro centum», что в переводе означает «со ста». Соответственно, под этим термином обычно понимается сотая часть от целого (или доля от целого). Процент обозначается всем нам известным знаком «%».

Нахождение процента требуется в трёх основных случаях:

  • требуется найти долю от числа;
  • определить соотношение чисел;
  • найти базовое число исходя из его же процента.

Для нахождения этого параметра существуют различные варианты формул и способов решения. Давайте рассмотрим их пристальнее.

Формулы для определения необходимой доли от суммы

Есть несколько способов найти требуемый процент от любого числа.

Первый способ состоит в делении нужной суммы на 100, после чего полученный результат умножается на % который необходимо определить.

Формула расчёта в данном случае выглядит так:

В данной формуле A – это базовое число, из которого нужно извлечь долю.

B – процент, который необходимо высчитать в числовом выражении.

Например, в каком-либо магазине вам отдают товар, цена которого 500 рублей, за 70% его стоимости. Используя приведённую выше формулу, высчитываем, сколько нам необходимо заплатить в конечном итоге (или сколько будет 70% от 500 рублей):

500 / 100 * 70 = 350 рублей

Таким образом, мы сможем приобрести нужный товар за 350 рублей.

Второй способ состоит в умножении базового числа A на коофициент 0, B

Где А – это базовое число, а B – количество процентов, которые необходимо определить.

Формула имеет следующую форму:

В случае упомянутого выше примера с 70% стоимости от 500 высчитываем стоимость товара:

Третий способ состоит в умножении базового числа на количество процентов, после чего полученный результат делим на 100.

Формула выглядит следующим образом:

В нашем случае это:

500 * 70 / 100 = 350

На калькуляторе нужная доля от числа находится ещё проще:

  1. Набираете на калькуляторе базовое число (А).
  2. Жмёте на умножить, вводите искомое число процентов.
  3. После чего жмёте на кнопку %, а затем на кнопку =. Калькулятор тот час же отобразит требуемый результат.

Одна из задач на вычисление проц

Как найти процентное соотношение чисел

Также могут возникнуть ситуации, когда нужно высчитать процентное соотношение двух чисел. К примеру, какой процент число B составляет от числа А, на сколько процентов (B) вы выполнили свою работу от заданной нормы (A), на сколько (B) повысилась цена товара от первоначальной (A) и так далее.

Для определения такого результата существуют следующая формула:

К примеру, нам нужно высчитать, какая доля от числа 500 составляет число 85.

Используя приведённую формулу, выполняем несложные арифметические операции:

85 / 500 * 100 = 17%

Таким образом, число 85 составляет 17% от 500.

Проверяем полученное число по формуле первого способа:

500 / 100 * 17 = 85.

Определение соотношения чисел

Читать еще:  Sgd валюта какой страны

Как найти базовую сумму исходя из ее процента

В некоторых случаях нам может быть известно какое-либо число и процент, которое оно составляет от базового числа. Нам необходимо определить значение. Например, нам может быть дана сумма 67, которое составляет 23% от базового числа. Каково же само базовое число?

Для решения этой задачи нам необходимо 67 разделить на 23 и умножить на 100. Формула вычисления процента выглядит следующим образом:

67 / 23 * 100 = 293, 31 (десятые после запятой можем округлить)

Проверяем полученный результат с помощью формулы из первого способа:

293, 31 / 100 * 23 = 67

Онлайн-сервисы для вычислений

В нахождении нужных процентов могут помочь различные сервисы-калькуляторы, работающие в режиме онлайн. Например, популярный сайт fin-calc.org.ua имеет в своём функционале различные инструменты, помогающие, в том числе, высчитать процент от любого числа.

  1. Перейдите на fin-calc.org.ua.
  2. Введите искомые показатели в соответствующие клетки.
  3. Нажмите на «Рассчитать». Вы сразу же получите искомый результат.

Калькуляционные вычисления на fin-calc.org.ua

Также указанный калькулятор позволяет высчитать какую долю от 1 составляет 2, прибавить % к числу или вычесть из него. Всё очень быстро и удобно.

Заключение

В нашем материале мы разобрали, каким образом можно найти процент от любого числа, а также привели формулы с различными примерами. Наиболее просто высчитать долю с помощью калькулятора, который имеется в абсолютном большинстве современных гаджетов.

Конвертер величин

Калькулятор процентов

Этот калькулятор определяет проценты в часто встречающихся на практике задачах, которые представлены в форме привычных вопросов о процентах.

1. Калькулятор для нахождения процента от числа

2. Калькулятор нахождения процента увеличения или уменьшения, если известны исходное и новое значение

3. Калькулятор для нахождения исходного числа по известному проценту от этого числа

4. Калькулятор для расчета процентного увеличения (разницы в процентах между двумя числами)

5. Калькулятор для расчета процентного уменьшения (разницы в процентах между двумя числами)

6. Калькулятор процентного увеличения

7. Калькулятор процентного уменьшения

Примеры решения задач на проценты

1. Расчет процента от числа

Найти число M, которое составляет P% от числа N.

В этом уравнении и в уравнениях ниже:

P% — процент, то есть число или отношение, выраженное в форме сотой части. В нашем примере P = 25%.

Nпервое число (исходное число) , в нашем примере N = 150.

Mвторое число, в нашем примере M = 37.5.

Пример: Сколько будет 25% от 150?

Результат: 25% от 150 равно 37.5.

2. Расчет процента увеличения или уменьшения, если известны исходное и новое значение

Какой процент P от N составляет число M? Иными словами, найти неизвестное число P, если известно, что P% от N равно M.

Пример: Какой процент от 200 составляет число 25?

Результат: 25 — это 12% от 200.

3. Расчет исходного числа по известному проценту от этого числа

Определить исходное число, если известно, что P% от этого числа равны M.

Пример: Определить исходное число, если известно, что 200% от этого числа равны 50. Иными словами, 50 — это 200% от какого числа?

Результат: 200% от 25 равны 50.

4. Расчет процентного увеличения (разницы в процентах между двумя числами)

Определить процент (P) увеличения исходного значения N, если известно, что после увеличения оно равно N.

Пример: На сколько процентов 200 больше 180?

Результат: 200 на 11,11% больше 180.

5. Расчет процентного уменьшения (разницы в процентах между двумя числами)

Определить процент (P) уменьшения исходного значения N, если известно, что после уменьшения оно равно N.

Другой пример: Магазин продавал товары по 20 евро за единицу. Продажа была не слишком успешной, поэтому для стимулирования продаж решили снизить стоимость до 15 евро. Определите убытки на единицу товара в процентном отношении к исходной цене.

Результат: Убытки на каждой единице товара с первоначальной стоимостью 20 евро и новой стоимостью 15 евро составили 25%.

6. Процентное увеличение числа

Определить число M, которое представляет собой P-процентное увеличение числа N.

Пример: Чему равно 10-процентное увеличение числа 5?

Результат: 10-процентное увеличение числа 5 равно 5,5.

7. Процентное уменьшение числа

Определить число M, которое представляет собой P-процентное уменьшение числа N.

Пример: Чему равно 10-процентное уменьшение числа 8?

Результат: 10-процентное уменьшение числа 8 равно 7,2.

Ссылка на основную публикацию
Adblock
detector